Surfactants carrying fluorocarbon chains hold great promise as gentle alternatives to conventional hydrocarbon-based detergents for the solubilization and handling of integral membrane proteins. However, their inertness towards lipid bilayer membranes has limited the usefulness of fluorinated surfactants in situations where detergent-like activity is required. We demonstrate that fluorination does not necessarily preclude detergency, as exemplified by a fluorinated octyl maltoside derivative termed F6 OM. This nonionic compound readily interacts with and completely solubilizes phospholipid vesicles in a manner reminiscent of conventional detergents without, however, compromising membrane order at subsolubilizing concentrations. Owing to this mild and unusual mode of detergency, F6 OM outperforms a lipophobic fluorinated surfactant in chaperoning the functional refolding of an integral membrane enzyme by promoting bilayer insertion in the absence of micelles.
Keywords: biomembranes; liposomes; micelles; proteins; surfactants.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.