Lasers are useful in many applications in medicine and biology. Historically, most laser use has involved heat generated in the interaction of the laser beam with the tissue. Today, however, the spectroscopic aspects of this laser use are playing a more dominant role in a number of applications. In this two-part series, Sune Svanberg and co-workers present illustrations of emerging clinical applications from cooperative work performed by the Lund Institute of Technology and the Lund University Hospital. Part I includes a survey of laser techniques for atomic and molecular analyses of samples of medical interest, spectroscopic analysis of the laser-induced plasma obtained when a high-power pulsed laser beam interacts with tissue, and the use of tumor-seeking agents in combination with laser radiation to provide new possibilities for malignant tumor detection and treatment. Part II, which will appear in the January 1, 1990, issue, describes the use of laser-induced fluorescence for tumor and plaque diagnostics. Different lasers have been used, and research efforts increasingly are being focused on excimer lasers and lasers in the IR region for the ablation of atherosclerotic plaques, cell layer by cell layer.