Objectives: The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase mutations in influenza B viruses that may further reduce NAI susceptibility, and to determine whether these mutations have the same effect in the two lineages of influenza B viruses that are currently circulating (B/Yamagata-like and B/Victoria-like).
Methods: We characterized the effect of 16 amino acid substitutions across five framework residues and four monomeric interface residues on the susceptibility to four different NAIs (oseltamivir, zanamivir, peramivir and laninamivir).
Results: Framework residue mutations E117A and E117G conferred highly reduced inhibition to three of the four NAIs, but substantially reduced neuraminidase activity, whereas other framework mutations retained a greater level of NA activity. Mutations E105K, P139S and G140R of the monomeric interface were also found to cause highly reduced inhibition, but, interestingly, their effect was substantially greater in a B/Victoria-like neuraminidase than in a B/Yamagata-like neuraminidase, with some susceptibility values being up to 1000-fold different between lineages.
Conclusions: The frequency and the effect of key neuraminidase mutations on neuraminidase activity and NAI susceptibility can differ substantially between the two influenza B lineages. Therefore, future surveillance, analysis and interpretation of influenza B virus NAI susceptibility should consider the B lineage of the neuraminidase in the same manner as already occurs for different influenza A neuraminidase subtypes.
Keywords: influenza B lineage; neuraminidase inhibitors; oseltamivir; resistance.
© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].