Scattering by single physically large and weak scatterers in the beam of a single-element transducer

J Acoust Soc Am. 2015 Mar;137(3):1153-63. doi: 10.1121/1.4913781.

Abstract

Quantitative ultrasound techniques are generally applied to characterize media whose scattering sites are considered to be small compared to a wavelength. In this study, the backscattered response of single weakly scattering spheres and cylinders with diameters comparable to the beam width of a 2.25 MHz single-element transducer were simulated and measured in the transducer focal plane to investigate the impact of physically large scatterers. The responses from large single spherical scatterers at the focus were found to closely match the plane-wave response. The responses from large cylindrical scatterers at the focus were found to differ from the plane-wave response by a factor of f(-1). Normalized spectra from simulations and measurements were in close agreement: the fall-off of the responses as a function of lateral position agreed to within 2 dB for spherical scatterers and to within 3.5 dB for cylindrical scatterers. In both measurement and simulation, single scatterer diameter estimates were biased by less than 3% for a more highly focused transducer compared to estimates for a more weakly focused transducer. The results suggest that quantitative ultrasound techniques may produce physically meaningful size estimates for media whose response is dominated by scatterers comparable in size to the transducer beam.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Computer Simulation
  • Eggs
  • Equipment Design
  • Fishes
  • Fourier Analysis
  • Models, Theoretical
  • Motion
  • Scattering, Radiation
  • Sound Spectrography
  • Sound*
  • Time Factors
  • Transducers*
  • Ultrasonics / instrumentation*