MicroRNAs are messengers during interferon-virus interplay and are involved in antiviral immunity, however, little is known about interferon-related microRNAs regarding their detection in serum and their potential use as non-invasive diagnostic and prognostic biomarkers in chronic hepatitis C (CHC). To elucidate some of the molecular aspects underlying failure of pegylated interferon-α/ribavirin therapy, we investigated pretreatment expression profiles of seven selected interferon-related microRNAs (miR-146a, miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296) by quantitative RT-PCR custom array technology in serum of Egyptian CHC genotype 4 patients and whether their pretreatment levels would predict patient response to the combination therapy. One hundred and six CHC patients and forty matched healthy controls were included. Patients were divided into sustained virological response (SVR) and non-responder (NR) groups. Serum miR-34a, miR-130a, miR-19a, miR-192, miR-195, and miR-296 were upregulated, whereas serum miR-146a was downregulated in CHC compared to controls. Significant correlations were found between expression levels of studied microRNAs and also with clinical data. Pretreatment levels of miR-34a, miR-130a, and miR-195 were significantly higher, whereas miR-192 and miR-296 levels were significantly lower in SVR than NR patients. miR-19a and miR-146a levels were not significantly different between the two groups. miR-34a was superior to differentiate CHC from controls, whereas miR-296 was superior to discriminate SVR from NR patients by receiver operating characteristic analysis. Multivariate logistic analysis revealed miR-34a and miR-195 as independent predictors for SVR and miR-192 as an independent variable for non-response. In conclusion, pretreatment expression profiles of five interferon-related microRNAs are associated with treatment outcome in CHC. Of these, miR-34a, miR-195, and miR-192 could predict treatment response. The profiling results could be used as novel non-invasive diagnostic and prognostic pharmacogenetic biomarkers for treatment personalization in CHC and could help to identify new microRNA-based antivirals.