Elatoside C protects the heart from ischaemia/reperfusion injury through the modulation of oxidative stress and intracellular Ca²⁺ homeostasis

Int J Cardiol. 2015 Apr 15:185:167-76. doi: 10.1016/j.ijcard.2015.03.140. Epub 2015 Mar 12.

Abstract

Background: We have previously shown that Elatoside C reduces cardiomyocyte apoptosis during ischaemia/reperfusion (I/R). Here, we investigated whether Elatoside C improves heart function in isolated rat hearts subjected to I/R and elucidated the potential mechanisms involved in Elatoside C-induced protection.

Methods and results: Isolated rat hearts were subjected to global ischaemia followed by reperfusion in the absence or presence of Elatoside C. We found that Elatoside C significantly attenuated cardiac dysfunction and depressed oxidative stress induced by I/R. Consistently, Elatoside C prevented I/R-induced mitochondrial dysfunction, which was evident by the inhibition of mitochondrial ROS production, mitochondrial permeability transition pore (mPTP) opening, cytochrome c release from the mitochondria and Bax translocation. Moreover, Elatoside C improved abnormal calcium handling during I/R, including increasing sarcoplasmic reticulum Ca(2+) ATPase (SERCA2) activity, alleviating [Ca(2+)]ER depletion, and reducing the expression levels of ER stress protein markers. All of these protective effects of Elatoside C were partially abolished by the PI3K/Akt inhibitor LY294002, ERK1/2 inhibitor PD98059, and JAK2/STAT3 inhibitor AG490. Further assessment in isolated cardiomyocytes showed that Elatoside C maintained the Ca(2+) transients and cell shortening against I/R.

Conclusions: Elatoside C protects against cardiac injury during I/R by attenuating oxidative stress and [Ca(2+)]i overload through the activation of both the reperfusion injury salvage kinase (RISK) pathway (including PI3K/Akt and ERK1/2) and the survivor activating factor enhancement (SAFE) pathway (including JAK2/STAT3) and, subsequently, inhibiting the opening of mPTPs.

Keywords: Calcium overload; Elatoside C; Ischaemia/reperfusion; Oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Blotting, Western
  • Calcium / metabolism*
  • Disease Models, Animal
  • Homeostasis / drug effects*
  • Intracellular Fluid / metabolism*
  • Male
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Oxidative Stress / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Saponins / pharmacology*

Substances

  • Saponins
  • elatoside C
  • Calcium