High levels of environmental contaminants such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and mercury (Hg) have been reported in some Arctic top predators such as seabirds. Chronic exposure to these contaminants might alter the response to environmental changes through interference with the regulation of corticosterone (CORT), a glucocorticoid stress hormone released by the hypothalamo-pituitary-adrenal (HPA) axis. Positive and negative relationships between CORT and environmental contaminants have been reported in polar seabirds. However, patterns appear inconclusive and it is difficult to attribute these relationships to a dysfunction of the HPA axis or to other confounding effects. In order to explore the relationships between the HPA axis activity and contaminants, we tested whether different aspects of the HPA axis of an Arctic seabird, the black-legged kittiwakes Rissa tridactyla, would be related to blood Hg, PCB and OCP concentrations. Male kittiwakes were caught during the incubation period in Svalbard and were subjected to different stress series: (1) a capture-restraint stress protocol, (2) an injection of dexamethasone (DEX) that enabled to test the efficacy of the HPA negative feedback and (3) an injection of adrenocorticotropic hormone (ACTH) that informed on the adrenal responsiveness. The HPA axis activity was unrelated to ΣOCPs and Hg. However, birds with high concentrations of ΣPCBs released more CORT after the ACTH injection. It is suggested that ΣPCBs may increase the number of ACTH-receptors on the adrenals. Additionally, hatching date was delayed in males with higher concentrations of ΣPCBs and ΣOCPs. This study gives new evidence that PCBs and adrenal activity may be related. Thus high PCB burden may make individuals more prone to other stressors such as ongoing climate change.
Keywords: ACTH; Adrenal gland; Corticosterone; Dexamethasone; PCBs; Reproduction.
Copyright © 2015 Elsevier Inc. All rights reserved.