Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin

PLoS One. 2015 Mar 23;10(3):e0121055. doi: 10.1371/journal.pone.0121055. eCollection 2015.

Abstract

Huntingtin (Htt) is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD) is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ) expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q) and mutant (46Q and 128Q) Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs) were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Circular Dichroism
  • Doxycycline / pharmacology
  • Humans
  • Huntingtin Protein
  • Mutation
  • Nerve Tissue Proteins / chemistry
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / metabolism*
  • Phosphorylation
  • Protein Processing, Post-Translational
  • Protein Structure, Secondary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • HTT protein, human
  • Huntingtin Protein
  • Nerve Tissue Proteins
  • Recombinant Proteins
  • Doxycycline

Grants and funding

Funding by the CDHI Foundation (http://chdifoundation.org/) is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.