Background: In general, the individual patient-level data (IPD) collected in clinical trials are not available to independent researchers to conduct economic evaluations; researchers only have access to published survival curves and summary statistics. Thus, methods that use published survival curves and summary statistics to reproduce statistics for economic evaluations are essential. Four methods have been identified: two traditional methods 1) least squares method, 2) graphical method; and two recently proposed methods by 3) Hoyle and Henley, 4) Guyot et al. The four methods were first individually reviewed and subsequently assessed regarding their abilities to estimate mean survival through a simulation study.
Methods: A number of different scenarios were developed that comprised combinations of various sample sizes, censoring rates and parametric survival distributions. One thousand simulated survival datasets were generated for each scenario, and all methods were applied to actual IPD. The uncertainty in the estimate of mean survival time was also captured.
Results: All methods provided accurate estimates of the mean survival time when the sample size was 500 and a Weibull distribution was used. When the sample size was 100 and the Weibull distribution was used, the Guyot et al. method was almost as accurate as the Hoyle and Henley method; however, more biases were identified in the traditional methods. When a lognormal distribution was used, the Guyot et al. method generated noticeably less bias and a more accurate uncertainty compared with the Hoyle and Henley method.
Conclusions: The traditional methods should not be preferred because of their remarkable overestimation. When the Weibull distribution was used for a fitted model, the Guyot et al. method was almost as accurate as the Hoyle and Henley method. However, if the lognormal distribution was used, the Guyot et al. method was less biased compared with the Hoyle and Henley method.