Do food ecosystems feed gut ecosystems? And if so… fuel the immune system? Recent developments in metagenomics have provided researchers tools to open the "black box" of microbiome science. These novel technologies have enabled the establishment of correlations between dysbiotic microbial communities and many diseases. The complex interaction of the commensal microbiota with the immune system is a topic of substantial interest due to its relevance to health. The human gastrointestinal tract is composed of an immense number of resident and transient microorganisms. Both may play a direct and vital role in the maintenance of human health and well-being. An understanding of the interactions and mechanisms through which commensal and food-derived microbes shape host immunity and metabolism may yield new insights into the pathogenesis of many immune-mediated diseases. Consequently, by manipulating the contribution of food microbiota to the functionality of the gut ecosystem, there is great hope for development of new prophylactic and therapeutic interventions. This paper presents some insights and comments on the possible impact of exogenous fermented food microbes on the gut homeostasis. We shed light on the similar features shared by both fermented food microbes and probiotics. In particular, the key role of microbial strains as part of food ecosystems for health and diseases is discussed through the prism of fermented dairy products and gut inflammation.
Keywords: Cheese; Foodborne microbes; Gut homeostasis; Immunity; Inflammation; Probiotics.
Copyright © 2015 Elsevier B.V. All rights reserved.