Aims: With the new era of multi-tip radiofrequency or balloon ablation catheters replacing the point-to-point ablation strategy, we aimed to determine the feasibility of a ring-laser catheter ablation technology to electrically isolate the superior vena cava (SVC) by exploring the advantages of the limitless catheter tip size possibly with the photodynamic therapy (PDT)-mediated ablation.
Methods and results: We developed a first-generation prototype of a circular-laser-mapping catheter by fitting a 7 cm plastic optical fibre onto a circular variable-loop Lasso™ mapping catheter. Following SVC venography, both the laser catheter and another ring catheter for monitoring the SVC potentials were placed at the SVC. After the systemic infusion of a photosensitizer (talaporfin sodium), we initiated the irradiation with an output of 1 W in three canines and 0.3 W in four. The creation of electrical isolation as well as occurrence of phrenic nerve injury, sinus node injury, and SVC stenosis were evaluated before, immediately after, and 1 month after the procedure. A PDT-mediated SVC isolation was successfully performed in all seven canines. The isolation was completed with a laser irradiation of 70.4 ± 71.4 J/cm under 30.9 ± 5.0 µg/mL of a photosensitizer without any sinus node injury, phrenic nerve palsy, or SVC stenosis in both the acute and chronic evaluations. The minimum isolation time of 270 s was not correlated with the laser input power or the photosensitizer concentration.
Conclusion: The electrical SVC isolation was successfully and instantly achieved using the PDT laser-ring catheter without any complications.
Keywords: Cardiac catheter ablation; Photodynamic therapy; Superior vena cava isolation; Talaporfin sodium.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: [email protected].