Storage of labile RNA in laboratories is accomplished through ultra-low freezing of the nucleic acids. This however requires expensive freezers, convenient storage, reliable electrical power, and increased shipping costs, thereby making it a less viable option. Biomatrica (San Diego, CA) has created RNAstable(®), a stabilization reagent that is used to store RNA in a dehydrated state at room temperature (RT) and protects the RNA from degradation. Our objective was to investigate the sequence integrity and suitability of RNA when stored in RNAstable at extended time periods and at varying temperatures through use of Illumina and Agilent RNA expression microarrays. We observed in Bioanalyzer electropherograms that total RNA extracted from 293 cells stored at RT in RNAstable for 4.5 and 11.5 months is similar in quality to RNA stored at -80°C. Illumina mRNA expression array QC metrics and gene expression patterns from RNAstable-protected RNA, in contrast to RNA stored without RNAstable, correlated well with those of freezer controls. Significantly, when RNA was stored in RNAstable at 45°C for 4.5 months, equivalent to 22 months RT storage, RNA quality, microarray probe signal intensities, probe detection rates, and expression profiles remained similar between RNAstable-protected RNA at RT and the -80°C controls. At 10.5 months, miRNA levels were compared among the storage conditions using miRNA expression arrays. Here too we found strong concordance between miRNA expression patterns when total RNA was stored in RNAstable or at -80°C. Further, Bioanalyzer electrophoresis of RNAstable-protected samples stored at RT for a relative total of 33 months or 50.5 months showed comparable integrity scores to those of -80°C controls. We conclude that use of RNAstable holds promise as an effective stabilization reagent for total RNA and should be useful in situations where shipping and storage options are limited resources.