Eremias multiocellata is a viviparous lizard that is known to exhibit temperature-dependent sex determination (TSD). Conventional Giemsa staining under light microscope examination has identified the karyotype of this species to be 2 n=36 I+2 m, with no detectable heteromorphic sex chromosomes. However, a highly differentiated female-specific chromosome, W, which is homomorphic with the Z chromosome, is found in the present study by the high-resolution cytogenetic method of comparative genomic hybridization (CGH). The results show that E. multiocellata is a viviparous lizard with both TSD and ZW heterogametic sex chromosomes. Despite the fact that a different sex ratio of male offspring was found in two populations (separated by an altitude of 1400 m) in previous incubation experiments, we demonstrate, using genomic in situ hybridization (GISH), that there is no significant chromosomal loss or acquisition between the two populations. This suggests that temperature may play a more important role in lowland populations. These results most likely indicate that E. multiocellata is transitioning between the evolutionary processes of TSD and genotypic sex determination (GSD) systems, and also give clues to the effect of TSD versus GSD in this process.
Keywords: TSD; comparative genomic hybridization; reptile; sex chromosome; viviparity.