Fighting while parasitized: can nematode infections affect the outcome of staged combat in beetles?

PLoS One. 2015 Apr 1;10(4):e0121614. doi: 10.1371/journal.pone.0121614. eCollection 2015.

Abstract

The effects of non-lethal parasites may be felt most strongly when hosts engage in intense, energy-demanding behaviors. One such behavior is fighting with conspecifics, which is common among territorial animals, including many beetle species. We examined the effects of parasites on the fighting ability of a saproxylic beetle, the horned passalus (Odontotaenius disjunctus, Family: Passalidae), which is host to a non-lethal nematode, Chondronema passali. We pitted pairs of randomly-chosen (but equally-weighted) beetles against each other in a small arena and determined the winner and aggression level of fights. Then we examined beetles for the presence, and severity of nematode infections. There was a non-significant tendency (p = 0.065) for the frequency of wins, losses and draws to differ between beetles with and without C. passali; non-parasitized individuals (n = 104) won 47% of their fights while those with the parasite (n = 88) won 34%, a 13% difference in wins. The number of nematodes in a beetle affected the outcome of fights between infected and uninfected individuals in an unexpected fashion: fighting ability was lowest in beetles with the lowest (p = 0.033), not highest (p = 0.266), nematode burdens. Within-fight aggression was highest when both beetles were uninfected and lowest when both were infected (p = 0.034). Collectively, these results suggest the nematode parasite, C. passali, is associated with a modest reduction in fighting ability in horned passalus beetles, consistent with the idea that parasitized beetles have lower energy available for fighting. This study adds to a small but growing body of evidence showing how parasites negatively influence fighting behavior in animals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aggression
  • Animals
  • Coleoptera / parasitology
  • Coleoptera / physiology*
  • Female
  • Host-Parasite Interactions
  • Male
  • Nematoda / physiology*

Grants and funding

This work was conducted as a part of the Population Biology of Infectious Diseases REU Site, a program funded by the National Science Foundation (Grant #DBI-1156707) and the University of Georgia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.