We report a novel method for in situ metrology of an X-ray bimorph mirror by using the speckle scanning technique. Both the focusing beam and the "tophat" defocussed beam have been generated by optimizing the bimorph mirror in a single iteration. Importantly, we have demonstrated that the angular sensitivity for measuring the slope error of an optical surface can reach accuracy in the range of two nanoradians. When compared with conventional ex-situ metrology techniques, the method enables a substantial increase of around two orders of magnitude in the angular sensitivity and opens the way to a previously inaccessible region of slope error measurement. Such a super precision metrology technique will be beneficial for both the manufacture of polished mirrors and the optimization of beam shaping.