Trypanosoma brucei is a flagellated eukaryotic pathogen responsible for sleeping sickness in central Africa. Because of the presence of a long motile flagellum (>20 μm) and its amenity to genetic manipulation, it is becoming an attractive model to study the assembly and the functions of cilia and flagella. In recent years, several aspects have been investigated, especially intraflagellar transport (IFT) that has been exhaustively characterized at the light microscopy level. In this manuscript, we review various methods to express fluorescent fusion proteins and to record IFT in living trypanosomes in normal or mutant contexts. We present an approach for separating anterograde and retrograde IFT, hence facilitating quantification of train speed, frequency, and size. A statistical analysis to discriminate different subpopulations of IFT trains is also summarized. These methods have proven their efficiency for the study of IFT in trypanosomes and could be applied to any other organism.
Keywords: Cilia and flagella; Imaging; Intraflagellar transport; Trafficking; Trypanosome.
Copyright © 2015 Elsevier Inc. All rights reserved.