Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection

PLoS Comput Biol. 2015 Apr 2;11(4):e1004179. doi: 10.1371/journal.pcbi.1004179. eCollection 2015 Apr.

Abstract

HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD4-Positive T-Lymphocytes / immunology*
  • Computational Biology
  • Female
  • HIV Infections / immunology*
  • HIV Infections / virology
  • HIV-1 / immunology*
  • Host-Pathogen Interactions / immunology*
  • Humans
  • Male
  • Models, Immunological*