To obtain gene expression profiles from samples collected in clinical trials, we conducted a pilot study to assess feasibility and estimate sample attrition rates when profiling formalin-fixed, paraffin-embedded specimens. Ten matched fresh-frozen and fixed breast cancer samples were profiled using the Illumina HT-12 and Ref-8 chips, respectively. The profiles obtained with Ref 8, were neither technically nor biologically reliable since they failed to yield the expected separation between estrogen receptor positive and negative samples. With the use of Affymetrix HG-U133 2.0 Plus chips on fixed samples and a quantitative polymerase chain reaction -based sample pre-assessment step, results were satisfactory in terms of biological reliability, despite the low number of present calls (M = 21%±5). Compared with the Illumina DASL WG platform, Affymetrix data showed a wider interquartile range (1.32 vs 0.57, P<2.2 E-16,) and larger fold changes. The Affymetrix chips were used to run a pilot study on 60 fixed breast cancers. By including in the workflow the sample pre-assessment steps, 96% of the samples predicted to give good results (44/46), were in fact rated as satisfactory from the point of view of technical and biological meaningfulness. Our gene expression profiles showed strong agreement with immunohistochemistry data, were able to reproduce breast cancer molecular subtypes, and allowed the validation of an estrogen receptor status classifier derived in frozen samples. The approach is therefore suitable to profile formalin-fixed paraffin-embedded samples collected in clinical trials, provided that quality controls are run both before (sample pre-assessment) and after hybridization on the array.