The present work aims at studying the decontamination efficacy of a calixarene-loaded nanoemulsion on two ex vivo wounded skin models mimicking superficial stings or cuts contaminated with uranium, and on a third model using excoriation. The decontaminating formulation was compared with the currently used radio-decontaminating soapy water (Trait rouge®) treatment. Moreover, to assess skin damage potentially induced by the undiluted nanoemulsion, in vitro toxicity studies were conducted on an in vitro reconstructed human epidermis, coupled with three different toxicity tests [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide, lactate dehydrogenase, and interleukin-1-α]. This work demonstrated not only a significant decontamination activity of the calixarene nanoemulsion on wounded skin, ranging from 92% to 94% of the applied uranium solution according to the ex vivo model used, but also the absence of side effects of this promising treatment.
Keywords: chelation; diffusion; emulsion; formulation vehicle; in vitro models; nanotechnology; skin; toxicity.
© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.