Modulation of the Nitrergic Pathway via Activation of PPAR-γ Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction

J Mol Neurosci. 2015 Jul;56(3):739-50. doi: 10.1007/s12031-015-0508-7. Epub 2015 Feb 18.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease characterized by impaired memory function and oxidative damage. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through modulating nitric oxide synthase. Recently, PPAR-γ agonists have shown neuroprotective effects in neurodegenerative disorders. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. The present study was designed to investigate the possible nitric oxide mechanism in the protective effect of pioglitazone against streptozotocin (STZ)-induced memory dysfunction. Wistar rats were intracerebroventricularly (ICV) injected with STZ. Then rats were treated with pioglitazone, NO modulators [L-arginine and nitro-L-arginine methyl ester (L-NAME)] for 21 days. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and mito-oxidative parameters, TNF-α, IL-6, and caspase-3 activity were measured. STZ-treated rats showed a memory deficit and significantly increased in mito-oxidative damage and inflammatory mediators and apoptosis in the hippocampus. Chronic treatment of pioglitazone significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers, and apoptosis in STZ-treated rats. However, L-arginine pretreatment with lower dose of pioglitazone has not produced any protective effect as compared to per se. Furthermore, pretreatment of L-NAME significantly potentiated its protective effect, which indicates the involvement of nitric oxide for activation of PPAR-γ action. These results demonstrate that pioglitazone offers protection against STZ-induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, and anti-apoptotic action mediating nitric oxide pathways and, therefore, could have a therapeutic potential in AD.

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Antioxidants / therapeutic use
  • Apoptosis / drug effects
  • Caspase 3 / metabolism
  • Interleukin-6 / metabolism
  • Male
  • Memory Disorders / drug therapy*
  • Memory Disorders / etiology
  • Memory Disorders / metabolism
  • NG-Nitroarginine Methyl Ester / pharmacology
  • NG-Nitroarginine Methyl Ester / therapeutic use
  • Neuroprotective Agents / pharmacology*
  • Neuroprotective Agents / therapeutic use
  • Nitric Oxide / metabolism*
  • Oxidative Stress / drug effects
  • PPAR gamma / metabolism*
  • Pioglitazone
  • Rats
  • Rats, Wistar
  • Streptozocin / toxicity
  • Thiazolidinediones / pharmacology*
  • Thiazolidinediones / therapeutic use
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Antioxidants
  • Interleukin-6
  • Neuroprotective Agents
  • PPAR gamma
  • Thiazolidinediones
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • Streptozocin
  • Caspase 3
  • NG-Nitroarginine Methyl Ester
  • Pioglitazone