Quantum simulation of energy transport with embedded Rydberg aggregates

Phys Rev Lett. 2015 Mar 27;114(12):123005. doi: 10.1103/PhysRevLett.114.123005. Epub 2015 Mar 27.

Abstract

We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Energetic disorder and decoherence introduced by the interaction with the background gas atoms can be controlled by the laser parameters. This allows for an almost ideal realization of a Haken-Reineker-Strobl-type model for energy transport. The transport can be monitored using the same mechanism that provides control over the environment. The degree of decoherence is traced back to information gained on the excitation location through the monitoring, turning the setup into an experimentally accessible model system for studying the effects of quantum measurements on the dynamics of a many-body quantum system.