Glucuronidation of OTS167 in Humans Is Catalyzed by UDP-Glucuronosyltransferases UGT1A1, UGT1A3, UGT1A8, and UGT1A10

Drug Metab Dispos. 2015 Jul;43(7):928-35. doi: 10.1124/dmd.115.063271. Epub 2015 Apr 13.

Abstract

OTS167 is a potent maternal embryonic leucine zipper kinase inhibitor undergoing clinical testing as antineoplastic agent. We aimed to identify the UDP-glucuronosyltransferases (UGTs) involved in OTS167 metabolism, study the relationship between UGT genetic polymorphisms and hepatic OTS167 glucuronidation, and investigate the inhibitory potential of OTS167 on UGTs. Formation of a single OTS167-glucuronide (OTS167-G) was observed in pooled human liver (HLM) (Km = 3.4 ± 0.2 µM), intestinal microsomes (HIM) (Km = 1.7 ± 0.1 µM), and UGTs. UGT1A1 (64 µl/min/mg) and UGT1A8 (72 µl/min/mg) exhibited the highest intrinsic clearances (CLint) for OTS167, followed by UGT1A3 (51 µl/min/mg) and UGT1A10 (47 µl/min/mg); UGT1A9 was a minor contributor. OTS167 glucuronidation in HLM was highly correlated with thyroxine glucuronidation (r = 0.91, P < 0.0001), SN-38 glucuronidation (r = 0.79, P < 0.0001), and UGT1A1 mRNA (r = 0.72, P < 0.0001). Nilotinib (UGT1A1 inhibitor) and emodin (UGT1A8 and UGT1A10 inhibitor) exhibited the highest inhibitory effects on OTS167-G formation in HLM (68%) and HIM (47%). We hypothesize that OTS167-G is an N-glucuronide according to mass spectrometry. A significant association was found between rs6706232 and reduced OTS167-G formation (P = 0.03). No or weak UGT inhibition (range: 0-21%) was observed using clinically relevant OTS167 concentrations (0.4-2 µM). We conclude that UGT1A1 and UGT1A3 are the main UGTs responsible for hepatic formation of OTS167-G. Intestinal UGT1A1, UGT1A8, and UGT1A10 may contribute to first-pass OTS167 metabolism after oral administration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / metabolism*
  • Enzyme Inhibitors / pharmacology
  • Genotype
  • Glucuronides / metabolism
  • Glucuronosyltransferase / antagonists & inhibitors
  • Glucuronosyltransferase / genetics
  • Glucuronosyltransferase / metabolism*
  • Humans
  • In Vitro Techniques
  • Intestinal Mucosa / metabolism
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Liver / enzymology
  • Microsomes / enzymology
  • Microsomes, Liver
  • Naphthyridines / metabolism*
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • Thyroxine / metabolism

Substances

  • 1-(6-(3,5-dichloro-4-hydroxyphenyl)-4-((4-((dimethylamino)methyl)cyclohexyl)amino)-1,5-naphthyridin-3-yl)ethanone
  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Glucuronides
  • Isoenzymes
  • Naphthyridines
  • RNA, Messenger
  • Glucuronosyltransferase
  • Thyroxine