Macrovasculature, microvasculature, and the heart are the main determinants of the structure and function of the circulatory system. Due to viscoelastic properties of large arteries, the pulsatile pressure and flow that result from intermittent ventricular ejection are smoothed out, so that microvasculature mediates steadily the delivery of nutrients and oxygen to tissues. The disruption of this function, which occurs when microvascular structure develops, mainly in response to hypertension, leads to end-organ damage. Microvascular structure is not only the site of vascular resistance but probably also the origin of most of the wave reflections generating increased central systolic blood pressure in the elderly. Many data of the literature suggest that hypertension-related damage to the micro and macrovascular system may be corrected by pharmacological agents. Among them, β-blocking agents and diuretics have a negligible effect on microvascular structure, while renin-angiotensin system antagonists and calcium entry blockers have favorable actions, improving large artery mechanics and possibly reducing central wave reflections. Central pulse pressure, indicative of changes in large conduit arteries is an independent determinant of vascular remodelling in small resistance arteries and might represent a main target of antihypertensive treatment.