Trastuzumab resistance is leading cause of mortality in HER2-positive breast cancers, and the role of TGF-β-induced epithelial-mesenchymal transition (EMT) in trastuzumab resistance is well established, but the involvement of lncRNAs in trastuzumab resistance is still unknown. Here, we generated trastuzumab-resistant breast cancer cells with increased invasiveness compared with parental cells, and observed robust epithelial-mesenchymal transition (EMT) and consistently elevated TGF-β signaling in these cells. We identified long noncoding RNA activated by TGF-β (lnc-ATB) was the most remarkably upregulated lncRNA in TR SKBR-3 cells and the tissues of TR breast cancer patients. We found that lnc-ATB could promote trastuzumab resistance and invasion-metastasis cascade in breast cancer by competitively biding miR-200c, up-regulating ZEB1 and ZNF-217, and then inducing EMT. In addition, we also found that the high level of lnc-ATB was correlated with trastuzumab resistance of breast cancer patients. Thus, these findings suggest that lncRNA-ATB, a mediator of TGF-β signaling, could predispose breast cancer patients to EMT and trastuzumab resistance.
Keywords: EMT; TGF-β; breast cancer; lnc-ATB; trastuzumab resistance.