Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses

Biomed Microdevices. 2015;17(3):9952. doi: 10.1007/s10544-015-9952-y.

Abstract

High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electric Conductivity
  • Electric Stimulation Therapy / instrumentation*
  • Electrodes, Implanted
  • Humans
  • Microarray Analysis / instrumentation
  • Microelectrodes*
  • Molecular Imprinting / methods
  • Nanodiamonds / chemistry*
  • Nanodiamonds / ultrastructure*
  • Semiconductors*
  • Systems Integration
  • Visual Acuity / physiology
  • Visual Prosthesis*

Substances

  • Nanodiamonds