Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

J Chem Phys. 2015 Apr 14;142(14):144111. doi: 10.1063/1.4917171.

Abstract

Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dimerization
  • Molecular Conformation
  • Molecular Dynamics Simulation*
  • Monte Carlo Method*
  • Quantum Theory*
  • Water / chemistry*

Substances

  • Water