This work evaluates the impact of heat processing of parvalbumin, a major fish allergen, on the consequences for quantitative analysis of this protein embedded in different matrices during heating (either isolated, in an aqueous extract, or in whole fillets) to assess potential health risks. It is shown that oligomerization of parvalbumin does occur, but only upon heat treatment above 80 °C. This coincides with the ability of the isolated protein to refold up to this temperature in a fully reversible way, as demonstrated by circular dichroism analysis. In autoclaved samples a disintegration of the protein structure is observed. The situation becomes different when parvalbumin is embedded in a matrix with other constituents, as in fish extracts or whole fillets. The electrophoretic analysis of parvalbumin (SDS-PAGE and immunoblotting) is largely determined by complexation with other proteins resulting in insoluble materials caused by the partial unfolding of the parvalbumin at elevated temperatures. This effect is more strongly observed for cod fish extract, compared to whole cod fillets, as in the latter situation the integrity of the tissue hampers this interprotein complexation. Moreover, it is shown by ELISA analysis of heat-treated samples that using blotting procedures where disintegration of complexes may be promoted, restoring some of the IgG-binding propensity, may provide false outcomes. It was concluded that antibody binding to parvalbumin is dominated by the potential to form heat-induced complexes with other proteins. The possibly less-soluble or extractable character of these complexes may provide confusing information regarding potential health risks of fish and fish protein-containing food composites when such heat-treated samples are analyzed by immunochemical assays.
Keywords: Western blot; allergen; heat processing; parvalbumin; protein structure.