Here, we assessed the extraction efficiency of a deployable bench-top nucleic acid extractor EZ1 in comparison to the column-based approach with complex sample matrices. A total of 48 EDTA blood samples and 81 stool samples were extracted by EZ1 automated extraction and the column-based QIAamp DNA Mini Kit. Blood sample extractions were assessed by two real-time malaria PCRs, while stool samples were analyzed by six multiplex real-time PCR assays targeting bacterial, viral, and parasitic stool pathogens. Inhibition control PCR testing was performed as well. In total, 147 concordant and 13 discordant pathogen-specific PCR results were obtained. The latter comprised 11 positive results after column-based extraction only and two positive results after EZ1 extraction only. EZ1 extraction showed a higher frequency of inhibition. This phenomenon was, however, inconsistent for the different PCR schemes. In case of concordant PCR results, relevant differences of cycle threshold numbers for the compared extraction schemes were not observed. Switches from well-established column-based extraction to extraction with the automated EZ1 system do not lead to a relevantly reduced yield of target DNA when complex sample matrices are used. If sample inhibition is observed, column-based extraction from another sample aliquot may be considered.
Keywords: DNA; EZ1; RNA; automate; column; inhibition; nucleic acid extraction.