A thin Fe2TiO5 layer was produced on hematite either by evaporating a TiCl4 solution on FeOOH or by a simple HF-assisted Ti treatment of FeOOH, both followed by annealing. The prepared Fe2TiO5-hematite heterostructure showed a significant enhancement in photocurrent density compared to that of the pristine hematite. For example, the sample after HF-assisted Ti treatment exhibited a significantly enhanced photocurrent of 2.0 mA/cm(2) at 1.23 V vs RHE. Moreover, the performance of the Fe2TiO5-hematite heterostructure can be further improved by coupling with Co-Pi catalysts, achieving a higher photocurrent of 2.6 mA/cm(2) at 1.23 V vs RHE. Synchrotron-based soft X-ray absorption spectroscopy analyses clearly revealed the existence of an Fe2TiO5 structure on hematite forming a heterojunction, which reduced the photogenerated hole accumulation and then improved the performance.
Keywords: Ti treatment; hematite nanostructures; solar water oxidation.