Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.
Keywords: Cancer therapeutics; Drug delivery; Nanoparticles; Ormeloxifene; Pancreatic cancer; Sonic hedgehog.
Copyright © 2015 Elsevier Ltd. All rights reserved.