Background: Ultrasmall superparamagnetic iron oxide nanoparticles have been used as a blood pool contrast agent for magnetic resonance angiography and perfusion studies. Linear relationship between signal intensity (SI) and nanoparticle concentration is essential for perfusion measurement.
Objectives: The aim of this study was to investigate the effect of different flip angles on maximum SI and the linear relationship between SI and different concentrations of iron oxide nanoparticles using T1-weighted Turbo-FLASH (fast low angle shot) inversion recovery sequence to find the optimum flip angle for perfusion measurement.
Materials and methods: This in vitro study was performed using carboxydextran coated iron oxide nanoparticles with 20 nm hydrodynamic size. Different concentrations of nanoparticles between 0 and 500 µmol Fe/L were prepared. MR imaging was performed using T1-weighted Turbo-FLASH inversion recovery sequence. Applied flip angles were 10-45º (interval of 5º). Then the maximum SI resulted by each concentration of nanoparticles was measured. Linear relationship between SI and nanoparticle concentration was evaluated regarding square correlations of 0.95 and 0.99. Coil non-uniformity was considered to obtain accurate SI of each image.
Results: The maximum SI was obtained at the highest applied flip angle (45°). The linear relationship between SI and nanoparticle concentration was seen up to 112.21 and 98.83 μmol Fe/L for the short (10°) and the long (45°) flip angles, respectively (R(2) = 0.95). These values were reduced up to 48.54 and 42.73 μmol Fe/L for these flip angles with R(2) of 0.99.
Conclusions: The maximum SI will be increased at higher flip angles with non-linear relationship between SI and nanoparticle concentration. The result shows that an increase in the flip angle leads to a decrease in the range of the linearity. The optimum flip angle which is suitable for perfusion measurement was obtained at 10º for our imaging parameters and sequence. The results of this study may be used in in vivo perfusion measurements.
Keywords: Inversion Recovery; Iron oxide nanoparticles; Magnetic Resonance Imaging.