Predatory insects often feed on plants or use plant products to supplement their diet, creating a potential route of exposure to systemic insecticides used as seed treatments. This study examined whether chlorantraniliprole or thiamethoxam might negatively impact Coleomegilla maculata and Hippodamia convergens when the beetles consumed the extrafloral nectar of sunflowers grown from treated seed. We reared both species on eggs of Ephestia kuehniella and then switched adult H. convergens to a diet of greenbugs, Schizaphis graminum, in order to induce oviposition in this species. Excised sunflower stems, either treated or control and refreshed every 48 h, were provided throughout larval development, or for the first week of adult life. Exposure of C. maculata larvae to chlorantraniliprole and thiamethoxam applied as seed treatments delayed adult emergence by prolonging the pupal period. When adults were exposed, thiamethoxam reduced the preoviposition period compared to chlorantraniliprole, whereas the latter treatment cause females to produce fewer clutches during the observation period. Larvae of C. maculata did not appear to obtain sufficient hydration from the sunflower stems and their subsequent fecundity and fertility were compromised in comparison to the adult exposure experiment where larvae received supplemental water during development. Exposure of H. convergens larvae to thiamethoxam skewed the sex ratio in favor of females; both materials reduced the egg viability of resulting adults and increased the period required for eclosion. Exposure of H. convergens adults to chlorantraniliprole reduced egg eclosion times compared to thiamethoxam and exposure to both insecticides reduced pupation times in progeny. The results indicate that both insecticides have negative, sublethal impacts on the biology of these predators when they feed on extrafloral nectar of sunflower plants grown from treated seed.