Fluorescent pyrene-methyl lauryl ester (PMLes) was synthesized and used for the determination of cellular lipase activities in lymphoblasts and fibroblasts from normal subjects and from patients affected with Wolman's or cholesteryl ester storage diseases (both exhibiting a deficiency of the lysosomal acid lipase). The hydrolysis of PMLes by acid lipase could be followed directly in a spectrofluorometer; this was possible because of the very high fluorescence emission of pyrene-methanol at 378 nm (monomeric form) in aqueous medium, whereas the substrate has practically no monomeric emission at 378 nm but emits only at 475 nm (excimeric form) in the experimental conditions used: this property permitted us to use PMLes as a fluorogenic substrate. In an alternative procedure, the enzymatic reaction could be determined after partition of the reaction mixture in a biphasic system of heptane and aqueous ethanol; the residual undegraded substrate partitioned into the upper heptane phase and the fluorescence of the product (i.e. pyrene-methanol) was read in the lower aqueous-ethanolic phase, at 378 nm. PMLes was hydrolyzed in extracts of normal lymphoblasts and fibroblasts by at least two lipases, one acidic lipase (pH 4.0) and a second more neutral enzyme (pH 6.5). The acidic lipase activity was practically absent in lymphoblasts and fibroblasts from Wolman's or cholesteryl ester storage diseases. This demonstrates that the fluorescent PMLes is hydrolyzed by the lysosomal acid lipase and can be used as a very sensitive fluorogenic substrate which permits direct recording of product formation and is suitable for the enzymatic diagnosis of either of these diseases.