The concentration alteration of cytosolic-free calcium ([Ca(2+) ]cyt ) is a well-known secondary messenger in plants and plays important roles during pollen grain germination and tube elongation. Here we demonstrate that CML25, a member of calmodulin-like proteins, has Ca(2+) -binding activity and plays a role in pollen grain germination, tube elongation and seed setting. CML25 transcript was abundant in mature pollen grains and pollen tubes, and its product CML25 protein was primarily directed to the cytoplasm. Two independent CML25 loss-of-function T-DNA insertion mutants suffered a major reduction in both the rate of pollen germination and the elongation of the pollen tube. Also, pollen grains of cml25 mutants were less sensitive to the external K(+) and Ca(2+) concentration than wild-type pollen. The disruption of CML25 increased the [Ca(2+) ]cyt in both the pollen grain and the pollen tube, which in turn impaired the Ca(2+) -dependent inhibition of whole-cell inward K(+) currents in protoplasts prepared from these materials (pollen grain and pollen tube). Complementation of cml25-1 mutant resulted in the recovery of wild-type phenotype. Our findings indicate that CML25 is an important transducer in the Ca(2+) -mediated regulation of K(+) influx during pollen germination and tube elongation.
Keywords: K+ channel; calmodulin-like protein; patch clamp; pollen tube growth.
© 2015 John Wiley & Sons Ltd.