Characteristics of IL-25 and allergen-induced airway fibrosis in a murine model of asthma

Respirology. 2015 Jul;20(5):730-8. doi: 10.1111/resp.12546. Epub 2015 Apr 30.

Abstract

Background and objective: Interleukin (IL)-25 has been implicated in the pathogenesis of human asthma by inducing a Th2 cytokine response, but its possible role in the development of airway remodelling is less clear.

Methods: We developed a murine surrogate of chronic airway inflammation induced by intranasal application of IL-25 alone. Comparison was with the 'classical' surrogate of ovalbumin (OVA) intranasal instillation into previously sensitized animals. Airway fibrotic biomarkers were analysed by immunohistochemistry and enzyme-linked immunosorbent assay. Additionally, proliferation assay and real-time polymerase chain reaction analysis were performed to assess IL-25's effects on primary human bronchial fibroblasts in vitro.

Results: In Balb/c mice, intranasal instillation of IL-25 alone induced florid airway fibrosis, including increased lay down of extracellular matrix proteins such as collagen I, III, V and fibronectin, increased numbers of fibroblasts/myofibroblasts, a profibrotic imbalance in matrix metalloproteinase/tissue inhibitor of metalloproteinase production and increased expression of profibrotic mediators including connective tissue growth factor and transforming growth factor-β1. These changes broadly reproduced those seen with classical intranasal OVA challenge in OVA-sensitized animals. Furthermore, IL-25 induced proliferation and expression of collagen I and III and smooth muscle α-actin in primary human lung fibroblasts.

Conclusions: We conclude that chronic exposure of the airways to IL-25 alone is sufficient to cause functionally relevant airway remodelling, with the corollary that targeting of IL-25 may attenuate bronchial remodelling and fibrosis in human asthmatics.

Keywords: IL-25; asthma; fibrosis; murine model; pathogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Airway Remodeling / immunology
  • Allergens / administration & dosage
  • Allergens / metabolism
  • Animals
  • Asthma* / etiology
  • Asthma* / immunology
  • Asthma* / pathology
  • Asthma* / physiopathology
  • Disease Models, Animal
  • Fibroblasts / metabolism
  • Fibrosis / etiology
  • Fibrosis / metabolism
  • Humans
  • Inflammation / metabolism
  • Interleukin-17 / administration & dosage
  • Interleukin-17 / metabolism*
  • Lung / pathology
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Ovalbumin / administration & dosage
  • Ovalbumin / metabolism
  • Respiratory System / metabolism
  • Transforming Growth Factor beta1 / metabolism

Substances

  • Allergens
  • Interleukin-17
  • Transforming Growth Factor beta1
  • Ovalbumin