We explored the phylogeographic patterns of intraspecific diversity in the Red-crowned Ant Tanager (Habia rubica) throughout its continent-wide distribution, in order to understand its evolutionary history and the role of evolutionary drivers that are considered to promote avian diversification in the Neotropics. We sampled 100 individuals of H. rubica from Mexico to Argentina covering the main areas of its disjunct distribution. We inferred phylogenetic relationships through Bayesian and maximum parsimony methodologies based on mitochondrial and nuclear markers, and complemented genetic analyses with the assessment of coloration and behavioral differentiation. We found four deeply divergent phylogroups within H. rubica: two South American lineages and two Mexican and Middle American lineages. The divergence event between the northern and southern phylogroups was dated to c. 5.0 Ma, seemingly related to the final uplift of the Northern Andes. Subsequently, the two South American phylogroups split c. 3.5 Ma possibly due to the development of the open vegetation corridor that currently isolates the Amazonian and Atlantic forests. Diversification throughout Mexico and Middle America, following dispersion across the Isthmus of Panama, was presumably more recent and coincident with Pleistocene climatic fluctuations and habitat fragmentations. The analyses of vocalizations and plumage coloration showed significant differences among main lineages that were consistent with the phylogenetic evidence. Our findings suggest that the evolutionary history of H. rubica has been shaped by an assortment of diversification drivers at different temporal and spatial scales resulting in deeply divergent lineages that we recommend should be treated as different species.
Keywords: Aves; Diversification; Habia rubica; Lowland forests; Neotropics; Phylogeography.
Copyright © 2015 Elsevier Inc. All rights reserved.