Objectives: Several recent studies have suggested that the physiopathology of bipolar disorder (BD) is related to immune system alterations and inflammation. Lithium (Li) is a mood stabilizer that is considered the first-line treatment for this mood disorder. The goal of the present study was to investigate the effects of Li administration on behavior and cytokine levels [interleukin (IL)-1β, IL-4, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α)] in the periphery and brains of rats subjected to an animal model of mania induced by amphetamine (d-AMPH).
Methods: Male Wistar rats were treated with d-AMPH or saline (Sal) for 14 days; on Day 8 of treatment, the rats were administered Li or Sal for the final seven days. Cytokine (IL-1β, IL-4, IL-6, IL-10, and TNF-α) levels were evaluated in the cerebrospinal fluid (CSF), serum, frontal cortex, striatum, and hippocampus.
Results: The present study showed that d-AMPH induced hyperactivity in rats (p < 0.001), and Li treatment reversed this behavioral alteration (p < 0.001). In addition, d-AMPH increased the levels of IL-4, IL-6, IL-10, and TNF-α in the frontal cortex (p < 0.001), striatum (p < 0.001), and serum (p < 0.001), and treatment with Li reversed these cytokine alterations (p < 0.001).
Conclusions: Li modulates peripheral and cerebral cytokine production in an animal model of mania induced by d-AMPH, suggesting that its action on the inflammatory system may contribute to its therapeutic efficacy.
Keywords: amphetamine; bipolar disorder; cytokines; lithium; mania.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.