Changes in the structural and gel textural properties were investigated in soy protein isolate (SPI) that was subjected to extreme acid pH-shifting and mild heating processes. The SPI was incubated up to 5 h in pH 1.5 solutions at room temperature or in a heated water bath (50 or 60 °C) to lead to protein structural unfolding, followed by refolding at pH 7.0 for 1 h. The combination of pH-shifting and heating treatments resulted in drastic increases in the SPI gel penetration force (p < 0.05). These treatments also significantly enforced the conversion of sulphydryl groups into disulfides, increased the particle size and hydrophobicity values, reduced the protein solubility (p < 0.05), and strengthened the disulfide-mediated aggregation of SPI. The intrinsic fluorescence spectroscopy results indicated structural unravelling when protein was subjected to acidic pH-shifting in combination with heating processes. The slight loss of secondary structure was observed by circular dichroism. These results suggested that pH-shifting combined with heating treatments provide great potential for the production of functionality-improved SPI, with the improved gelling property highly related to changes in the protein structure and hydrophobic aggregation.
Keywords: gel textural property; heating; pH shifting; protein structure; soy protein isolate.