Strong and Conductive Dry Carbon Nanotube Films by Microcombing

Small. 2015 Aug;11(31):3830-6. doi: 10.1002/smll.201500111. Epub 2015 May 4.

Abstract

In order to maximize the carbon nanotube (CNT) buckypaper properties, it is critical to improve their alignment and reduce their waviness. In this paper, a novel approach, microcombing, is reported to fabricate aligned CNT films with a uniform structure. High level of nanotube alignment and straightness was achieved using sharp surgical blades with microsized features at the blade edges to comb single layer of CNT sheet. These microcombs also reduced structural defects within the film and enhanced the nanotube packing density. Following the microcombing approach, the as-produced CNT films demonstrated a tensile strength of up to 3.2 GPa, Young's modulus of up to 172 GPa, and electrical conductivity of up to 1.8 × 10(5) S m(-1) , which are much superior to previously reported CNT films or buckypapers. More importantly, this novel technique requires less rigorous process control and can construct CNT films with reproducible properties.

Keywords: carbon nanotube films; carbon nanotubes; electrical properties; mechanical properties; microstructures.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.