Background: Exposure to hormonally active chemicals could plausibly affect pubertal timing, so we are investigating this in the Breast Cancer and the Environment Research Program.
Objectives: Our goal was to examine persistent organic pollutants (POPs) in relation to pubertal onset.
Methods: Ethnically diverse cohorts of 6- to 8-year-old girls (n = 645) provided serum for measure of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and lipids. Tanner stages [breast (B) and pubic hair (PH)], and body mass index (BMI) were measured at up to seven annual clinic visits. Using accelerated failure time models, we calculated time ratios (TRs) for age at Tanner stages 2 or higher (2+) and POPs quartiles (Q1-4), adjusting for confounders (race/ethnicity, site, caregiver education, and income). We also calculated prevalence ratios (PRs) of Tanner stages 2+ at time of blood sampling.
Results: Cross-sectionally, the prevalence of B2+ and PH2+ was inversely related to chemical serum concentrations; but after adjustment for confounders, only the associations with B2+, not PH2+, were statistically significant. Longitudinally, the age at pubertal transition was consistently older with greater chemical concentrations; for example: adjusted TR for B2+ and Q4 for ΣPBDE = 1.05; 95% CI: 1.02, 1.08, for ΣPCB = 1.05; 95% CI: 1.01, 1.08, and for ΣOCP = 1.10; 95% CI: 1.06, 1.14, indicating median ages of about 6 and 11 months older than least exposed, and with similar effect estimates for PH2+. Adjusting for BMI attenuated associations for PCBs and OCPs but not for PBDEs.
Conclusions: This first longitudinal study of puberty in girls with serum POPs measurements (to our knowledge) reveals a delay in onset with higher concentrations.