In epidemiological studies, urinary biomonitoring is a valid approach to assess the association between environmental chemical exposure and children's health. Many clinical biomarkers (e.g., endogenous metabolites) are also based on analysis of urine. Considering the variability in urinary output, urinary concentrations of chemicals are commonly adjusted by creatinine and specific gravity (SG). However, there is a lack of systematic evaluation of their appropriateness for children. Furthermore, urinary SG and creatinine excretion could be influenced by body mass index (BMI), but the effect of BMI status on the two correction factors is unknown. We measured SG and creatinine concentrations of repeated first morning urine samples collected from 243 primary school children (8-11 years) over 5 consecutive weekdays. Urinary SG presented a higher temporal consistency compared with creatinine. Urinary SG was associated with sex (p < 0.001), whereas sex (p =0.034) and BMI (p = 00.008) were associated with urinary creatinine levels. Inter-day collection time was not associated with SG or creatinine after excluding the effect of Monday as a confounder. When stratified by BMI status, none of the factors were associated with creatinine among the overweight and obese children.
Conclusion: Generally, SG is preferable for correcting the variability in urinary output for children although creatinine correction may also perform well in overweight and obese children. SG correction is recommended for epidemiological exposure analysis in children based on urinary levels of exogenous or endogenous metabolites.
Keywords: Body mass index; Children; Creatinine; Specific gravity; Urine.