The final aim of this study was to confirm the neuroprotective effects of recombinant human erythropoietin (rhEPO)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles stabilized by sodium cholate (rhEPO-Ch-NP) and compare their effects with those of rhEPO using an in vitro model of cerebral ischemia. Glutamate-induced excitotoxic damage on SH-SY5Y cells, a human neuroblastoma cell line, with or without rhEPO-Ch-NPs was quantitatively evaluated. The rhEPO-Ch-NPs were carefully prepared using a water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique with PLGA, sodium cholate hydrate, and ethyl acetate. The rhEPO-Ch-NPs were fully characterized by both transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). In addition, significant intracellular uptake of these particles was monitored by confocal microscopy. Notably, the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and nuclear changes observed by 4',6-diamidino-2-phenylindole (DAPI) staining in SH-SY5Y cells demonstrated that rhEPO-Ch-NPs were safer at any concentration investigated and rescued more neuronal cells, while preserving normocytic features against glutamate-induced excitotoxic damages compared to rhEPO.