The reconstruction of disturbed landscapes back to working ecosystems is an issue of increasing importance for the oil sand areas in Alberta, Canada. In this context, the fate of oil-sand-derived organic material in the tailings sands used for reclamation is of utmost environmental importance. Here we use electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of maltene fractions to identify compositional variations over a complete oil sand mining and recultivation process chain. On the basis of bulk compound class distributions and percentages of unique elemental compositions, we identify specific compositional features that are related to the different steps of the process chain. The double bond equivalent and carbon number distributions of the N1 and S1O2 classes are almost invariant along the process chain, despite a significant decrease in overall abundance. We thus suggest that these oil-sand-derived components can be used as sensitive tracers of residual bitumen, even in soils from relatively old reclamation sites. The patterns of the O2, O3, and O4 classes may be applied to assess process-chain-related changes in organic matter composition, including the formation of plant-derived soil organic matter on the reclamation sites. The N1O2 species appear to be related to unidentified processes in the tailings ponds but do not represent products of aerobic biodegradation of pyrrolic nitrogen compounds.