Background: Citrullination is a presently under-recognized posttranslational protein modification catalyzed by PAD enzymes. Immune responses to citrullinated neo-epitopes are identified in a growing number of inflammatory and autoimmune diseases. However, the involvement of hypercitrullination in the pathogenesis of bronchial asthma is still unknown.
Methods: As main experimental tool, we examined the effect of 2-chloroacetamidine (2CA), a PAD enzyme inhibitor, on OVA-immunized and airway-challenged BALB/c mice; a commonly used model of allergic airway inflammation. We also measured the effect of 2CA on ex vivo lymphocytes and cell lines.
Results: In vivo, 2CA dramatically suppressed lung tissue hypercitrullination, inflammatory cell recruitment, and airway-Th2 cytokine secretion. 2CA also suppressed systemic OVA-specific and total IgE production dramatically, effectively preventing de novo and diminishing established disease without measurably impacting general immunocompetence. In vitro, 2CA markedly inhibited the proliferation of mouse and human T cells with cell cycle block and apoptosis during a limited, postactivation phase.
Conclusions: 2CA acts as narrow-spectrum immunosuppressant that selectively targets lymphocyte populations involved in active inflammatory tissue lesions. If hypercitrullination is generated in patients with asthma, 2CA may represent a novel disease modulator for human asthmatics/allergic diseases.
Keywords: T cell; animal model; asthma; protein citrullination.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.