Eutrema salsugineum (= Thellungiella salsuginea Brassicaceae), a species growing in highly saline habitats, is a good model for use in salt-stress research. However, its evolutionary migrations and genetic variations within and between disjunct regions from central Asia to northern China and North America remain largely unknown. We examined genetic variations and phylogeographic patterns of this species by sequencing ITS, 9 chloroplast (cp) DNA fragments (4379 bp) and 10 unlinked nuclear loci (6510 bp) of 24 populations across its distributional range. All markers suggested the high genetic poverty of this species and the limited number of genetic variations recovered was congruently partitioned between central Asia, northern China and North America. Further modelling of nuclear population-genetic data based on approximate bayesian computation (ABC) analyses indicated that the long-distance dispersals after the recent origin of E. salsugineum may have occurred from central Asia to the other two regions respectively within 20000 years. The fast demographic expansions should have occurred in northern China in a more recent past. Our study highlights the importance of using ABC analyses and nuclear population genetic data to trace evolutionary migrations of the disjunct distributions of the plants in the recent past.