Si film electrodes were deposited onto Cu foil current collectors fabricated with well-formed CuO nanostructures. The structural and electrochemical properties of the Cu foils oxidized for 1, 3, and 6 h and of the Si film electrodes were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), and charge/discharge tests. The morphologies and XRD profiles suggested that the oxidized Cu foils consisted of a top CuO layer and a bottom Cu2O layer. The surface roughness of the Cu foils decreased with increasing oxidation time since the flower-like CuO nanostructures weakly adhered to the surface were easily detached by ultrasonic cleaning. The cycle performance of the Si film electrode with the rougher CuO layer rapidly deteriorated, whereas the flat Cu2O layer showing a relatively high electric conductivity induced the formation of a dense Si film and improved the electrochemical performance of the Si film electrode.