Pathogen-selective labeling was achieved by using the novel gemcitabine metabolite analogue 2'-deoxy-2',2'-difluoro-5-ethynyluridine (dF-EdU) and click chemistry. Cells infected with Herpes Simplex Virus-1 (HSV-1), but not uninfected cells, exhibit nuclear staining upon the addition of dF-EdU and a fluorescent azide. The incorporation of the dF-EdU into DNA depends on its phosphorylation by a herpes virus thymidine kinase (TK). Crystallographic analyses revealed how dF-EdU is well accommodated in the active site of HSV-1 TK, but steric clashes prevent dF-EdU from binding human TK. These results provide the first example of pathogen-enzyme-dependent incorporation and labeling of bioorthogonal functional groups in human cells.
Keywords: bioorthogonal chemistry; chemical reporters; click chemistry; nucleosides; viruses.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.