MicroRNAs (miRNAs) are a class of small noncoding RNAs that play important roles in tumorigenesis and tumor progression through regulation of gene expression. Earlier, miR-142-3p was shown to decreased in cervical cancer cells; here; we explore the biological functional role of miR-142-3p and underlying mechanism in cervical cancer cells. We first detected the expression of miR-142-3p in six human cervical cancer cell lines and chose HeLa and SiHa cells for functional studies. By gain and loss of function experiments, we showed that overexpression of miR142-3p resulted in downregulation of Frizzled7 receptor (FZD7) and inhibited proliferation and invasion in HeLa and SiHa cells, whereas miR142-3p inhibitor-transfected cells showed reduced FZD7 expression and increased invasion capacity. In addition, we demonstrated that FZD7 was a direct target of miR-142-3p by dual luciferase assay and Western blot analysis. Overexpression of FZD7 expression was able to reverse the inhibitory effects induced by miR-142-3p. Taken together, miR-142-3p functions tumor suppressive effects in cell proliferation and invasion in cervical cancer cells, suggesting a potential therapeutic approach for cervical cancer.
Keywords: Cervical cancer; FZD7; Invasion; Proliferation; miR-142-3p.