Excessive accumulation of oxalate negatively affects nutritional value of many vegetables, such as spinach (Spinacia oleracea L.). Mixed solution of ammonium and nitrate could effectively reduce oxalate accumulation, while the mechanism involved remains unknown. High (Heizhenzhu) and low (Weilv) oxalate-accumulated spinach genotypes were used in this study to investigate the association of oxalate accumulation and root uptake of nitrogen. Exposure of increasing nitrate or mixed-nitrogen (nitrate:ammonium = 1:1) significantly increased leaf total and soluble oxalate contents. In contrast, increasing ammonium did not result in elevation of leaf oxalate. Correlation analysis confirmed that leaf oxalate accumulation was positively associated with root uptake of nitrate but not ammonium. Moreover, addition of ammonium significantly reduced nitrate uptake rate, and subsequently decreased leaf oxalate accumulation. The results suggest that oxalate synthesis in spinach leaves is associated with its root uptake of nitrate, and ammonium is able to reduce oxalate accumulation by inhibiting uptake of nitrate.
Keywords: Ammonium; Genotype; Nitrate; Oxalate (PubChem CID: 971); Oxalate accumulation; Spinach.
Copyright © 2014 Elsevier Ltd. All rights reserved.