Self-assembly, as one kind of general phenomenon, has often been reported in solution chemistry. However, in gas-solid phase, it seldom has been disclosed. The MoN nanochex exhibits unique geometrical shape. Its body segment is composed of textured single crystal MoN nanowires, while its edges parallel to [1̅22̅] direction are attached by nanowires whose crystal orientation is different from that of the body segment. In this paper, the structure of the MoN nanochex is studied, and accordingly, a possible growth mechanism is proposed. We expect to extend this method to designed synthesis of many other functional materials, such as nitrides, carbides, and borides, and thereby to significantly tailor their resulting properties. Meanwhile, as one promising electrode material for Li-ion batteries (LIBs), MoN nanochex on Ti foil has been applied in the electrochemical energy storage, and stably delivered a specific capacity of 720 mAh/g with a remarkable Coulombic efficiency up to 98.5%, implying an achieved synergic effect derived from both mesoporous structure and the direct contact with the conducting substrate.
Keywords: Li-ion batteries; MoN; anode; nanochexes; self-assembly.